【机器学习PAI实践十二】机器学习算法基于信用卡消费记录做信用评分

背景

如果你是做互联网金融的,那么一定听说过评分卡。评分卡是信用风险评估领域常用的建模方法,评分卡并不简单对应于某一种机器学习算法,而是一种通用的建模框架,将原始数据通过分箱后进行特征工程变换,继而应用于线性模型进行建模的一种方法。

评分卡建模理论常被用于各种信用评估领域,比如信用卡风险评估、贷款发放等业务。另外,在其它领域评分卡常被用来作为分数评估,比如常见的客服质量打分、芝麻信用分打分等等。在本文中,我们将通过一个案例为大家讲解如何通过PAI平台的金融板块组件,搭建出一套评分卡建模方案。

本实验案例可在机器学习PAI平台使用,包含整个实验流程和数据:

数据集介绍


这是一份国外某机构开源的数据集,数据的内容包括每个用户的一些性别、教育、婚姻、年龄等属性,同时也包含用户过去一段时间的信用卡消费情况和账单情况。payment_next_month是目标队列,表示用户是否偿还信用卡账单,1表示偿还,0表示没有偿还。

数据供30000条。
数据集下载地址:https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

实验流程

先来看下实验图:

现在对一些关键节点进行介绍:

(1)拆分

将输入数据集分为两部分,一部分用来训练模型,另一部分用来预测评估。

(2)分箱

分箱组件类似于onehot编码,可以将数据按照分布映射成更高维度的特征。我们以age这个字段为例,分箱组件可以按照数据在不同区间的分布进行分享操作,分箱结果如图:


最终分箱组件的输出如图,每个字段都被分箱到多个区间上:

(3)样本稳定指数PSI

样本稳定指数是衡量样本变化所产生的偏移量的一种重要指标,通常用来衡量样本的稳定程度,比如样本在两个月份之间的变化是否稳定。通常变量的PSI值在0.1以下表示变化不太显著,在0.1到0.25之间表示有比较显著的变化,大于0.25表示变量变化比较剧烈,需要特殊关注。

本案例中,可以综合比较拆分前后以及分箱结果的样本稳定程度,返回每个特征的PSI数值:

(4)评分卡训练

评分卡训练的结果图如下:

评分卡的精髓是将复杂的比较难理解的一些模型权重用符合业务标准的分数表示。

  • intercepy表示的是截距
  • Unscaled是原始的权重值
  • Scaled是分数更改指标,比如对于pay_0这个特征,如果特征落在(-1,0]之间分数就减29,如果特征落在(0,1]之间分数就加上27.
  • importance表示每个特征对于结果的影响大小,数值越大表示影响越大

(5)评分卡预测

展示每个预测结果的最终评分,在本案例中表示的是每个用户的信用评分。

结论

基于用户的信用卡消费记录,最终通过评分卡模型的训练,我们在评分卡预测中可以拿到每个用户的最终信用评分,这个评分可以应用到其它的各种贷款或者金融相关的征信领域中去。

体验产品:阿里云数加机器学习平台

作者微信公众号(与作者讨论):

时间: 2017-07-31

【机器学习PAI实践十二】机器学习算法基于信用卡消费记录做信用评分的相关文章

【玩转数据系列十三】机器学习算法基于信用卡消费记录做信用评分

机器学习算法基于信用卡消费记录做信用评分 背景 如果你是做互联网金融的,那么一定听说过评分卡.评分卡是信用风险评估领域常用的建模方法,评分卡并不简单对应于某一种机器学习算法,而是一种通用的建模框架,将原始数据通过分箱后进行特征工程变换,继而应用于线性模型进行建模的一种方法. 评分卡建模理论常被用于各种信用评估领域,比如信用卡风险评估.贷款发放等业务.另外,在其它领域评分卡常被用来作为分数评估,比如常见的客服质量打分.芝麻信用分打分等等.在本文中,我们将通过一个案例为大家讲解如何通过PAI平台的金

【机器学习PAI实践十二】机器学习实现男女声音识别分类(含语音特征提取数据和代码)

背景 随着人工智能的算法发展,对于非结构化数据的处理能力越来越受到重视,这里面的关键一环就是语音数据的处理.目前,许多关于语音识别的应用案例已经影响着我们的生活,例如一些智能音箱中利用语音发送指令,一些搜索工具利用语音输出文本代替键盘录入. 本文我们将针对语音识别中最简单的案例"男女声音"识别,结合本地的R工具以及机器学习PAI,为大家进行介绍.通过本案例,可以将任何用户的语音数据标记出性别,并且保持高准确率.我们把整个实验流程切分为两部分,第一部分是声音信号的特征提取,通过R的信号处

【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练

背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Tensorflow做深度学习做深度学习的网络搭建和训练需要通过PYTHON代码才能使用,对于不太会写代码的同学还是有一定的使用门槛的.本文将介绍另一个深度学习框架Caffe,通过Caffe只需要填写一些配置文件就可以实现图像分类的模型训练. 关于PAI的深度学习功能开通,请务必提前阅读https://

【机器学习PAI实践十一】机器学习PAI为你自动写歌词,妈妈再也不用担心我的freestyle了(提供数据、代码

背景 最近互联网上出现一个热词就是"freestyle",源于一个比拼rap的综艺节目.在节目中需要大量考验选手的freestyle能力,freestyle指的是rapper即兴的根据一段主题讲一串rap.freestyle除了考验一个人rap的技巧,其实我觉得最难的是如何在短时间内在脑海中浮现出有韵律的歌词. PAI平台是阿里云人工智能平台,在上面可以通过最简单的拖拉拽的方式,完成对各种结构化以及非结构化数据的处理.因为有了PAI,这种自动生成歌词的事情都不再成为难题.我现在不光可以

【机器学习PAI实践九】如何通过机器学习实现云端实时心脏状况监测

背景 我们通过之前的案例已经为大家介绍了如何通过常规的体检数据预测心脏病的发生,请见http://blog.csdn.net/buptgshengod/article/details/53609878.通过前文的案例我们可以生成一个算法模型,通过向这个模型输入用户实时的体检数据就会返回用户患有心胀病的概率.那么我们该如何搭建这套实时监测用户健康情况的服务呢?PAI最新推出的在线预测服务帮您实现.目前,机器学习PAI已经支持实验模型一键部署到云端生成API,通过向这个API推送用户的实时体检数据,

【机器学习PAI实践二】人口普查统计

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2 一.背景 感谢大家关注玩转数据系列文章,我们希望通过在阿里云机器学习平台上提供demo数据并搭建相关的实验流程的方式来帮助大家学习如何通过算法来挖掘数据中的价值.本系列文章包含详细的实验流程以及相关的文档教程,欢迎大家进入阿里云数加机器学习平台体验.实验案例请在新建实验页签查看,如下图. 二.数据集介绍 数据源: UCI开源数据集Adult 针

【机器学习PAI实践八】用机器学习算法评估学生考试成绩

(本文数据为实验用例) 一.背景 母亲是老师反而会对孩子的学习成绩造成不利影响?能上网的家庭,孩子通常能取得较好的成绩?影响孩子成绩的最大因素居然是母亲的学历?本文通过机器挖掘算法和中学真实的学生数据为您揭秘影响中学生学业的关键因素有哪些. 本文的数据采集于某中学在校生的家庭背景数据以及在校行为数据.通过逻辑回归算法生成离线模型和学业指标评估报告,并且可以对学生的期末成绩进行预测. 二.数据集介绍 数据集由25个特征和一个打标数据构成, 具体字段如下: 字段名 含义 类型 描述 sex 性别 s

【机器学习PAI实践七】文本分析算法实现新闻自动分类

一.背景 新闻分类是文本挖掘领域较为常见的场景.目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源.本文尝试通过智能的文本挖掘算法对于新闻文本进行分类.无需任何人肉打标,完全由机器智能化实现. 本文通过PLDA算法挖掘文章的主题,通过主题权重的聚类,实现新闻自动分类.包括了分词.词型转换.停用词过滤.主题挖掘.聚类等流程. 二.数据集介绍 具体字段如下: 字段名 含义 类型 描述 category 新闻类型 string 体育.女性.社会.军事.科技等

【机器学习PAI实践一】搭建心脏病预测案例

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2 一.背景 心脏病是人类健康的头号杀手.全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病. 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用.本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例. 二.数据集介绍 数据源: UC